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Abstract

We describe a large audio-visual speech corpus recorded in a
car environment, as well as the equipment and procedures used
to build this corpus. Data are collected through a multi-sensory
array consisting of eight microphones on the sun visor and four
video cameras on the dashboard. The script for the corpus con-
sists of four categories: isolated digits, isolated letters, phone
numbers, and sentences, all in English. Speakers from various
language backgrounds are included, 50 male and 50 female.

In order to vary the signal-to-noise ratio, each script has
five different noise conditions: idling, driving at 35 mph with
windows open and closed, and driving at 55mph with win-
dows open and closed. The corpus is available through
<http://iww.ifp.uiuc.edu/speech/AVICAR/>.

1. Introduction

Human perception of speech is a multimodal process. The
acoustic speech signal is the primary cue for recognizing
speech, but visual observation of the lips, teeth, tongue, and
jaw contribute to perception of phoneme articulation, while
the angle of the head and raising of the eyebrows help con-
vey sentence-level prosody [1]. Human behavior of combin-
ing audio and visual information for speech recognition is well
demonstrated by the McGurk effect [2] in which the discrep-
ancy between audio and visual information results in percep-
tual confusion. Visual information plays an important role es-
pecially in noisy environments [3] [4] which encourage the ad-
ditional use of visual information to increase speech recognition
accuracy.

Automatic speech recognition (ASR) achieves higher than
99% correct recognition accuracy for connected digits using a
hidden Markov Model (HMM) recognizer specifically designed
for this task [5]. However, the performance degrades severely
when the training and test data sets have mismatched noise con-
ditions such as signal-to-noise ratio (SNR) or speaking styles.
To build a robust speech recognizer, a very large training data
set may be used to cover all possible types of acoustic variabil-
ity. Feature and model compensation can be used to reduce the
sensitivity of an HMM to acoustic noise [6], but even noise-
compensated models perform best when trained using mixed-
SNR data [7].

Background noise affects the acoustic environment as an
additive noise signal at the microphone, but more importantly
by causing the speaker to increase vocal effort to overcome
noise levels in his own ears (the Lombard effect) [8]. The vari-
ation of speech production caused by noise exposure at the ear
can degrade performance more than the ambient noise itself [9].
Because of this, simply adding additive noise to speech data
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recorded in a quiet environment may not produce training data
that adequately represents real-world test conditions.

One of the noisy environments in need of a speech recog-
nizer is the inside of an automobile. Operating certain devices
such as a telephone or a car navigation system by hand may dis-
tract the driver. Even basic functions such as operating an air
conditioner or the car audio system may cause undesirable dis-
traction. A reliable speech recognition system for the automo-
bile environment can be a good alternative to manual operation
of those functions.

In our research, we have found that typical acoustic back-
ground noise levels in a car vary from approximately 15dB
SNR to -10dB SNR. For automobile environments, various
microphone types and positions can increase SNR [10]. An-
other approach is to use a microphone array to increase the
SNR [11]. In order to try methods to improve the performance
of speech recognizers for the automobile environment, it is nec-
essary to have an extensive speech database recorded in actual
cars. SpeechDat-Car [12] is a multilingual database of nine Eu-
ropean languages recorded in an automobile environment. It
started in 1998 and 600 sessions will be recorded with at least
300 speakers for each language. It uses a total of four micro-
phones, one near-field microphone as a reference and three far-
field microphones. CU-Move [13] is a database using an ar-
ray of five microphones with a reference microphone to capture
background noise. An overview of various car speech databases
is presented in [14].

Combining visual and audio information can improve ASR
accuracy for low SNR conditions [15]. For humans, it has been
shown that the presence of the visual signal is roughly equiva-
lentto a 12 dB gain in acoustic SNR [3]. Automatic systems can
show similar benefits: the combination of audio and visual fea-
tures using a coupled HMM (CHMM) can improve word recog-
nition accuracy by more than 40% at 20 dB SNR with additive
white Gaussisan noise [16].

Audio-visual databases currently available include
MOCHA [17] and CUAVE [18]. Because of the large size
of each data file, the number of speakers is limited: 10 for
MOCHA and 37 for CUAVE. The size of vocabulary is also
limited: 78 isolated words for MOCHA and only connected
and isolated digits for CUAVE. These databases are recorded
in a quiet office environment with only one microphone.

We are interested in low SNR speech recognition using
a microphone array combined with visual information to in-
crease accuracy. In order to facilitate study of this problem, we
have collected a speech recognition training and test database
recorded in a moving automobile using an array of four cam-
eras and eight microphones (AVICAR: audio-visual speech in a
car).



2. Array of sensors
2.1. Microphonearray and beamforming

The purpose of using an array of microphones as input to an
ASR system is its ability to acquire an enhanced signal us-
ing beamforming algorithms. Delay-and-sum beamforming im-
proves SNR by suppressing sources off the main axis of the
beam. Adaptive beamformers selectively suppress the noise
power incident from directions other than the source [19] [20].
Various microphone array processing methods are well summa-
rized in [11].

Automobile environments have various kinds of noise such
as wind noise, road noise, and vehicles passing by. These noise
sources originate from different directions than the speaker,
so their impact can be minimized by using a microphone ar-
ray. It has been demonstrated that beamforming can reduce
the word error rate of a speech recognizer in noisy environ-
ments [21] [22].

2.2. Visual feature extraction and 3D face modeling

An array of cameras allows for the extraction of 3D shape-based
features for audio-visual speech recognition. The main ap-
proaches for visual feature extraction from image sequences can
be grouped into image-based, visual-motion-based, geometric-
feature-based, and model-based approaches [23]. The advan-
tage of this last approach is that model-based features can of-
ten be made invariant to image transformations such as trans-
lation, rotation, and lighting [23]. One problem with the video
data captured in an automobile is an illumination effect: light-
ing conditions vary widely and these changing light conditions
are likely to dominate the observed distribution of image-based
audio-visual speech recognition features, substantially degrad-
ing the word recognition accuracy at low SNR. To compensate
for variable lighting, we propose to supplement image-based
features with 3D model-based features extracted from a cam-
era array. 3D models of lip movement can be estimated from
2D image data [24]. It is possible to construct a 3D model and
facial feature extraction with images from different angles [25].

3. Equipment
3.1. Audio

An array of eight omnidirectional microphones captures audio.
The off-the-shelf cell phone microphones and the LM386 audio
preamplifiers are inexpensive and comparable to what a com-
mercial system would use. Each microphone is 6 mm in diam-
eter. They are spaced 1.5inches apart. Microphone preampli-
fiers are mounted at the microphones on the sun visor. Seven
of the eight preamplified audio channels are sent to an ADAT
(Advanced Digital Audio Tape) through shielded cables. The
ADAT records eight audio channels at 16 bit resolution with a
sampling rate of 48kHz. We considered recording audio di-
rectly to the hard disk of a laptop, but the ADAT tapes provide
a safe backup, a “camera master” in the jargon of professional
video production. One channel of the ADAT is reserved for the
control sequence, described in section 3.3.

3.2. Video

Cameras above the windshield or far to the side have a poor
view of the subject’s mouth, so the cameras are placed on the
dashboard. Mounting more than four cameras in this limited
space does not increase the amount of useful data enough to

warrant the extra complexity of more camcorders and more data
files. Therefore, we chose an array of four cameras to capture
video (Fig. 1). Each camera is aimed from different positions on
the dashboard to capture the face region of a person sitting in the
front passenger seat. Black cardboard lens hoods reduce glare
and also help in aiming the cameras. The four video streams are
combined by a video multiplexer and sent to a MiniDV cam-
corder. One of the two audio channels of the camcorder is used
for the eighth microphone input from the microphone array; the
other is used for a control sequence which is exactly the same as
that recorded by the ADAT. The camcorder uses the same audio
resolution and sampling rate as the ADAT.

Figure 1: Eight microphones on the sun visor, four cameras on
the dashboard.

3.3. Control sequence

Since the corpus is multimodal, we need to synchronize the
data. Also, we need to segment the data from the raw record-
ings into individual utterance units. For efficiency in building
a database, automatic synchronization and segmentation is re-
quired.

We use DTMF (Dual Tone Multi-Frequency) tones as a
control sequence. DTMF control tones are generated by a tele-
phone handset held by the subject (Fig. 2). As with most of
the other equipment, the telephone handset is inexpensive con-
sumer technology: tested to survive abuse, and easily replace-
able when it does fail. When back in the laboratory, we use
similarly robust DTMF detection software.

One tone out of ten digits is assigned to each utterance in the
script, and subjects are asked to press the assigned button before
speaking. Mistakes are marked with the “x” button, pauses with
the “#’ button. The DTMF signal is fed into both the ADAT
and camcorder.

During postprocessing, segmentation and labeling are done
with the information about which tone is detected. The onset
of each tone synchronizes the recordings from the ADAT and
camcorder.

3.4. Installation

For the equipment, we have three signal sources (array of mi-
crophones, cameras, and DTMF generator) and two record-
ing devices (ADAT and MiniDV camcorder). Recording de-
vices are located in the back seat. Every device is powered by
the AC power from a DC to AC converter except for the 9V



battery-powered microphone preamplifiers. Equipment instal-
lation takes one person 20 minutes, removal 10 minutes. Fig-
ure 3 shows all the signal paths.

4. Speakersand scripts

The corpus includes 100 speakers, 50 male and 50 female.
About 60% are native speakers of American English, while
others have Latin American, European, East Asian, and South
Asian backgrounds. All speech recorded for the database is in
English.

Table 1: Categories for each script set.

| Category | Examples |
Isolated Digits one, two, - - -, ten, oh, zero, done
Isolated Letters a,bc -,z

Phone numbers
TIMIT Sentences

(163)516-3885
When all else fails, use force.

Ten different script sets are used for the corpus and each set
is for ten speakers, five male and five female. Categories of each
script set are listed in Table 1. Isolated digits are used to train
recognition models for automatic dialing purposes. Isolated let-
ters are useful for the study of difficult phonetic contrasts, e.g.,
‘bee’ vs. ‘dee.” Phone numbers are included as connected digits
because automatic dialing is a potentially important application
of this technology. Phonetically balanced TIMIT sentences are
included to provide training and test data for phoneme-based
recognizers [26]. Subjects are asked to speak isolated digits
and letters twice under each noise condition. Each script set has
20 phone numbers with 10 digits each, a total of 200 individual
digits chosen randomly with uniform frequency. For 10 phone
numbers ‘0’ is pronounced as ‘zero’, for the other 10 phone
numbers, ‘oh.’” A total of 20 sentences are used in each script
set. These sentences are randomly chosen out of 450 phoneti-
cally compact sentences from the TIMIT speech database. Each
speaker reads one script set repeatedly under five different noise
conditions. The vocabulary of this corpus consists of 13 digits,
26 isolated letters, and other words in TIMIT sentences, for a
total vocabulary size of 1,317 words. The total number of utter-
ances is 118 for each script set. Since these scripts are recorded
from 100 speakers and repeated under five different noise condi-
tions, the total number of utterances is 59,000 recorded in eight
audio and four video channels.

Figure 2: Script with the telephone handset.
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Figure 3: Equipment setup.

5. Post processing

Audio and video data are collected on the ADAT and MiniDV
tapes during the recording session. Data on those magnetic
tapes are transferred to the computer for post processing.

5.1. Audio

Audio data in the ADAT are transferred via an optical cable
through a multi-channel Firewire (IEEE 1394) audio interface
(MQOTU 828mkill) to the computer. Eight-channel audio signals
are saved as .WAV files. The eighth channel which contains
the DTMF control sequence is separated for onset detection
and identification of each tone. Audio data are downsampled
from 48 kHz to 16 kHz after segmentation. Speech amplitude
varies as a function of noise level because of the Lombard ef-
fect (Fig. 4).
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Figure 4: The speech waveform ‘seven’ under five noise condi-
tions.

5.2. Video

Video data including the two-channel audio data in MiniDV
tape are transferred through the Firewire interface to the com-
puter. Audio channel containing the control sequence is sepa-
rated for segmentation. One channel containing the eighth mi-
crophone signal is segmented according to the control sequence
and added to the audio data. The video stream (Fig. 5) is en-
coded to a compressed format to reduce the size and then also
segmented according to the control sequence.



Figure 5: A snapshot of the video stream.

6. Conclusions

We have built a speaker-independent multi-sensory audio-visual
speech corpus in a car environment. This database is available
by request from <http://www:.ifp.uiuc.edu/speech/AVICAR/>.
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