
Model-based interactive sound for an immersive virtual environment
Robin Bargar*, Insook Choi*, Sumit Das†, Camille Goudeseune*

*Audio Development Group, National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign
†Electronic Visualization Laboratory, EECS, University of Illinois at Chicago

rbargar@ncsa.uiuc.edu

Abstract
We discuss an audio rendering pipeline that provides real-time interactive sound synthesis for virtual environments. Sounds
are controlled by computational models including experimental scientific systems. We discuss composition protocols and

software architecture for hierarchical control and for synchronization with graphics. Rendering algorithms are presented for
producing sound from a physically-based simulation of a chaotic and from higher-dimensional topological structures.

1. Introduction Existing computer music systems provide some of these
capabilities in specialized hardware. Rather than adopt
existing music systems we have focused on the importance
of demonstrating that sound synthesis is relevant for gen-
eral-purpose computing. We want researchers to have
immediate access to sound computation in the same lan-
guage, operating system and control flow that supports
standard computing and graphics rendering engines. There-
fore our pipeline is written in unix/c/c++ to maintain poten-
tial portability and scalability and stay close to graphics
architectures and their user communities.

In this paper we discuss the implementation of a rendering
pipeline designed to bring sound synthesis and composition
as research components into virtual environments (VE).
We find that VE research provides a platform for projects
closely related to computer music composition. We also
find the VE research community is interested in the poten-
tial relevance of composition for their work, and the rele-
vance of their work for composers. We have been develop-
ing a software-based sound synthesis and composition
protocol to enhance the possibilities of collaboration. This
protocol defines a pipeline from computational models to
sounds. Along this pipeline we identify endeavors related
to computer music including real-time sound synthesis,
gesture-based interaction, composition algorithms, physi-
cally-based sound production models, and techniques for
synchronizing sound with graphical events.

2.1 3D Primitives
The reality image in computer graphics is encoded in an
objective 3D embedding space. This objective encoding
describes the range of potential subjective views that may
be obtained from the image. Actual 3D rendering depends
on hardware that is downstream from the objective 3D
encoding. We adopt similar subsystems for audio. A pri-
mary software language encodes oscillations, envelopes,
and sound propagation information, and manages rendering
of dry (non-localized) sources. Secondary, scalable display
subsystems are used to generate localization and depth
cueing. Regardless of rendering hardware, 3D features of
the propagation environment are encoded as attributes of
the primitive description of a sound.

A rendering pipeline encourages composers to consider the
entire synthesis process as a composition. Generating and
controlling complexity is among the most difficult tasks of
computer music, and the pipeline model is valuable for
connecting complex systems with rendering engines. Rapid
low-level communication from complex model to sound
synthesis engine permit the composer to use interactive
control of the complex model to control the sound.

Figure 1. CAVE Automatic Virtual Environment
University of Illinois

2. VE Systems
Virtual environments are multiple-engine computation
systems converging toward solutions for immersive human
interface. Immersion has been associated with two classes
of experience: fictional constructs and feedback constructs.1
Music listening may be identified primarily with the first
class and music performance primarily with the second. In
order that sound provide aspects of both classes of experi-
ence we embark toward a familiar goal: techniques for
generating dynamical audio spectra informed by real-world
analysis, using efficient numerical encoding that allows
synthesis with interactive variation in real-time.

1 Fictional constructs involve an observer’s “willing suspension of disbe-
lief” that supports the diegesis (the narrative world created in literature,
theater and cinema). Feedback constructs are “everyday experiences” that
an observer constructs by taking actions and observing their consequences
through multiple sensory modalities.

ICMC Proceedings 1994 471 Acoustics

2.2 The CAVE virtual environment
The primary testbed for our sound system is the CAVE, a
surround-sound, surround screen, projection-based VR
system designed to convey an unencumbered immersive
group experience [DeFanti, 1992]. 3D computer graphics
are projected into a 10′×10′×10′ cube composed of display
screens that completely surround the viewer (figure 1). A
head and hand-tracking system produces the correct stereo
perspective and isolates the position and orientation of a 3D
input device. CAVE observers do not wear helmets or
obstructing gear. Instead they put on lightweight stereo
glasses and walk around freely, interacting with virtual
objects and with one another. One set of glasses carries a
magnetic tracking device that allows the stereo projection
reference point to be computed for a mobile point of view.
The wand, a 3-D mouse provides 6 degrees of continuous
control plus 3 buttons and a pressure-sensitive joystick.

2.3 The CAVE Audio Display System
CAVE audio uses speakers and a MIDI-controlled distribu-
tion matrix (figure 2). Independent localization of up to 4
sources is provided by MIDI-controlled attenuation at each
speaker. Distance cues are provided by MIDI-controlled
reverberation and delay; the mix of wet and dry signal may
be controlled independently for each source at each
speaker. The reflectivity of the screens tends to confound
directional cues at excessive loudness levels. Headphones
provide better imaging but are encumbering and present
problems when multiple users are in the CAVE. Infrared
wireless headsets can interfere with two other infrared sig-
nal systems in the CAVE (projector control and stereo
glasses synchronization). Computing a unique audio focal
point for each user is also problematic. Listening positions
can be computed only from the position of the tracker. If
other CAVE users receive this signal they will be listening
“inside” of the active user’s head.

Figure 2. CAVE display systems.

3. Sound Composition Protocols
There is a question whether sound can carry “extra-
musical” information without forfeiting its status as a com-
position. In text-based music, in music drama, in composed
quotation, imitation, and sampling we find formulations
that address but do not resolve this question. VE expects
sound to play an informative role, to carry what has been

understood so far as extra-musical information. Acoustic
information space is taken as the embedding space for mu-
sic composition. A composer’s task in this case can be to
reverse the roles, and make a composition as an embedding
space for “extra-musical” sounds.
We designated sound protocols to help construct a relation
between informative sound and composition. The function-
ality and architecture of the audio pipeline was developed
according to these protocols.

3.1 Data Driven Sounds
Data driven sounds respond to numerical patterns that are
generated in a computational model. We begin by asking
“how can this model be interpreted as if it produces
sound?” In some cases the data patterns are continuous and
the values may be used as sound samples directly. In other
cases data values are mapped onto synthesis parameters.
Each of the following categories is to some degree data-
driven if we consider the measurement of user actions a
data stream.

3.2 Field Sounds
Field sounds are dynamical background sounds, constructed
ambience generators that have internal behavior and also
respond to data from the VE. In this sound protocol we
apply the concept of ecosystem as a living system in which
many suborganizations are present and interact in order to
contribute to the globally evolving changes. Global
changes have their own internal clock in automated fashion.
In addition to this automation, field sounds are locally re-
sponsive to an observer’s activities by generating changes
that correspond to the actions that observer takes in CAVE,
such as physical movements or wand operations over time.
These local changes are not isolated signals synchronized
with the user, they are changes woven into the fabric of the
sound field.

3.3 Flying Acoustic Information Space
In this protocol we use the observer’s location and point of
view to provide the definition of the scope of information
retrieval. We view for example the globe as an information
source and storage system from which retrieval of the in-
formation will be operated in interactive mode. We store
concrete sound samples at points on the earth’s surface and
these sounds will be retrieved and ‘sampled’ based upon
where the user’s point of view is projected. The degree of
clarity and complexity in the mixture will vary in corre-
spondence to the location an observer. The flight path
through information space can be thought of as operating a
dynamical audio mixer. The map of the earth’s surface acts
literally as a map of information storage locations.

3.4 Sound Cues and Complementary Sounds
The function of the sound cue is to inform or alert an ob-
server to information which her scope of observation (field
of view) does not reach. It can be designed to reveal hidden
layers of information due to any visual limitations, also to
emphasize selected layers of information due to overflowed
complexity in data representation. Complementary sounds

ICMC Proceedings 1994 472 Acoustics

can be understood as a subset of the Data Driven Sounds
protocol. The emphasis is on the feature that sounds will
present complementary information to the visual informa-
tion. The purpose is to simplify data representation without
reducing information by presenting it in a multi-modal
fashion.

4. Software Architecture
By including complex systems models in our concept of
audio pipeline we make it necessary to import these models
into our software environment. There are a formidable
number of numerical models that may be valuable for
sound synthesis or composition purposes. Since these
models are already implemented in software by experts in
various fields it does not make sense to duplicate their ef-
forts while trying to generalize their code. We have
adopted a client-server architecture so that existing software
models can be used as control programs for synthesis soft-
ware, with a minimum of re-programming.
The server can process messages sent to high-level compo-
sition routines or to low-level primitives (figure 3). Our
class hierarchy includes 3 subsystems: at the low end, the
scheduler and sample buffers along with basic synthesis
algorithms, a middle layer that defines note events and
synthesis instrument configurations, and a level for describ-
ing complex musical events.

4.1 HTM
HTM [Freed, 1992] is a system for real-time interactive
sound creation. It is based on the client-server model. In
this model, the application program which needs sound is
called the client. The client sends requests to the server,
which is another program, usually running on a different
computer. The server then fulfills the client’s requests to
the best of its ability. The HTM server is a program that
accepts commands from a client application program and
schedules message processing and sound sample genera-
tion.
On top of this are implemented a number of synthesis algo-
rithms that HTM uses to generate its samples, such as FM,
additive synthesis, sample playback, and MIDI. We call
this the Vanilla Sound Server (VSS).

4.2 VSS
VSS is based on the concept of a note event, which is a
continuing auditory event that has a unique identity. When
the client starts a note playing on the server, a note handle
is returned. This is a floating point number that can be used
to refer to this note in the future, so that the client can, for
instance, change the pitch of the note or turn the note off.

4.3 Group Functions
Functions that control groups of parameter changes are
implemented above VSS to provide higher level control of
the existing functionality of VSS. Groups are composed of
dynamic objects that hang around just above the level of
VSS. The client program can communicate with these
objects to control VSS. In this way, the client can take

advantage of the object’s built-in rules and knowledge,
making the interaction much simpler and higher-level.
The objects that make up the complex models provide ac-
cess to all the functionality in VSS, and preserve the con-
cept of the note handle. In addition, each object also has a
unique handle, so that the client can send multiple message
to the same object. As with notes, the object handle is a
floating point number returned to the client when an it is
created or retrieved.
For each VSS synthesis algorithm, there is a corresponding
object that basically functions as an interface wrapper for
this algorithm. Many instances of each object can be cre-
ated, and can either act independently or in tandem.
For every command applicable to a VSS algorithm, there is
a corresponding message you can send to its higher-level
object, so you don’t lose access to lower-level functionality
by using these objects.
The messages that objects send to each other are in the
same form that the client uses to send messages to the
server. The result of this is that an object does not know or
care whether a message comes from a client or from an-
other object. This is useful in building up a network, as the
client can test different subsets of the network independ-
ently.

Figure 3. CAVE Audio Software architecture.

4.4 The Generic Interface
The generic interface is intended to simplify the task of
adding and modifying sound in an application. It is de-
signed so that although the flow of control and structure is
defined in the application code, the types of sounds that are
actually played are defined externally, in an input file. This
allows an application’s sound to be modified without
changing or recompiling the application itself. To use the
interface, the client must tell the server which objects it
wants to use and how it wants those objects configured.
Then, the client will send data to the objects configured.
Then, the client will send data to the objects, either at regu-
lar intervals or whenever a state in the application changes.

5. Computational Models
Models for controlling the server are usually based upon
computational systems developed in the sciences. To be

ICMC Proceedings 1994 473 Acoustics

ICMC Proceedings 1994 474 Acoustics

n the model.

useful in the audio pipeline these models require some
adaptations to their software and some interpretive
consideration by the composer. When models are
incorporated they have a numerical systems component and
an interpretive component. The interpretive component is
often realized as an interface that selects salient features of
the model for interactive control. An interface can help the
composer navigate complex parameter spaces and
differentiate patterns and features from noisy or redundant
regions i

5.1 Chua’s Circuit
Many aspects of our current system were prototyped during
the study of a chaotic electric circuit. Chua’s circuit pro-
duces many types of signals, from sine-like periodic pat-
terns to intermittent and unpredictable noise-like patterns
[Rodet, 1993]. Using a digital simulation of the physical
circuit implemented as a set of ordinary differential equa-
tions, we apply navigation and control techniques to chaos
for generating musical signals. Sound is created by con-
verting the numerical representation of the voltage directly
into sound samples. We designed the manifold interface to
facilitate the navigation of the control space of the circuit
(figure 4). The manifold describes a function for the con-
tinuous transformation of parameters mapped to the axes of
the cube. Paths may be traced on a manifold in real-time,
and retraced automatically to provide a reproduction of
sound sequences. A unique aspect of this interface is the
simultaneous presentation of control space and multi phase
space of the circuit.

Figure 4. The Manifold interface.

5.2 Alpha Shapes
We have been exploring the use of sound to represent
higher-dimensional topological structures, with an interest
in the reciprocal use of topology for controlling sound. A
finite set of points in 3-dimensional space and a real pa-

rameter alpha uniquely define a simplicial complex, con-
sisting of vertices, edges, triangles, and tetrahedral embed-
ded in space. We call this the alpha-complex of the points.
The alpha-shape is the geometric object defined as the
union of the elements in the complex [Edelsbrunner, 1994].
Alpha shapes can be viewed as generalizations of the con-
vex hull of the point set. It formalizes the intuitive notion
of shape, and for varying parameter alpha, it ranges from
crude to fine shapes. The most crude shape is the convex
hull itself, which is obtained for very large values of alpha.
As alpha decreases, the shape shrinks and develops cavities
that may join to form tunnels and voids.
An audio experience of the complex is based on beginning
at an arbitrary point and advancing through the shape. We
map different features of this wave and its history to differ-
ent sound parameters. The goal is to explore the complex
with meaningful auditory and visual cues. For example, the
development of the wave is mapped to the sequencing of
sound envelopes and thus provides audible expression of
topological connectivity information. The smoothness of
the wave is reflected by the shape of the sound spectrum,
and the combinatorial size is mapped to frequency. The
local dimensionality of the complex controls the complexity
of the sound through the recursive generation of waves of
lower dimensions.

6. Conclusions
Both the Chua’s circuit and the Alpha Shapes project have
resulted in new representations of science-based models.
These models may yield new methods for efficient control
of sound synthesis algorithms. The rapid progress on each
of these projects during the same one-year period can be
attributed to the presence of a real-time interactive sound
synthesis pipeline in a graphics-oriented workstation envi-
ronment.

7. Acknowledgements
We wish to thank Kelly Fitz and Ulrike Axen of the NCSA
Audio Development Group for their contributions and sug-
gestions. We are grateful for the support and interaction
provided by Leon Chua and Herbert Edelsbrunner.

8. References
[DeFanti, 1992] T.DeFanti, C.Cruz-Neira, D.Sandin,
R.Kenyon, and J.Hart. The CAVE: Audio Visual Experi-
ence Automatic Virtual Environment. Comm. ACM 35, 6,
64-72. June 1992.
[Freed, 1992] A. Freed. Tools for Rapid Prototyping of
Music Sound Synthesis Algorithms and Control Strategies.
Proc. Intl. Computer Music Conf., San Jose, 1992.
[Rodet, 1993] X. Rodet. Models of Musical Instruments
from Chua’s Circuit with Time Delay. IEEE Trans. Circuits
and Systems-II 40, 10, 696-700. September 1993.
[Edelsbrunner, 1994] H.Edelsbrunner and E.P.Mucke.
Three-Dimensional Alpha Shapes. ACM Trans. Graphics
13, 1, 43-72. January 1994.

