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Abstract
We present a cae study of sound production and performance that optimize the interadivity of model-based VR
systems. We analyze problems for audio presentation in VR architedures and we demonstrate solutions obtained by a
model-based data-driven comporent architedure that supports interadive scheduling. Criteria and a protocol for
couding jMax and VSS software ae described. We nclude with recommendations for diagnostic tools, sound
authoring middeware, and further reseach onsound feedbadk methods to support a topology of interacting observers.

1. The VR Audio Problem Space

We orfigure Virtual Redity to provide red-time
interadion with geometric and tempora models. The
dominant medium for displaying immersive VR is
animated computer graphic images. While VR is frequently
referred to as a “space”based upon D models, in most VR
systems the primary physicd spaceis constrained to a flat
surface where an image is projeded. A virtual camera view
is generally a tetrahedron with its apex at the viewing
position defining a viewing wvolume epanding
symmetricdly into a geometric 3-space Stereo image
computation generates depth cues by offsetting 2D images.
For the most part visual “3-D” immersion results from 2D
fronta image projedion enhanced by interadive camera
mohility. Introdwcing sound into a flat, frontal visual field
often induces cinematic solutions: imitating space rather
than simulating space That s, fixed resonance
charaderistics and fixed timing of wave propagation, rather
than spatio-temporal simulation. 3D audio has been touted
as an important attribute of VR. However most VR systems
presented at acalemic conferences and trade shows only
provide rudimentary soundfile playback, often couped to
MIDI-enabled devices. The significant limitation in this
approach is the @sence of information concerning an
interadive simulation. Pre-recorded sounds and MIDI
sequences can provide & best arough approximation o the
behavior of a smulated system. They are often olserved to
be mere imitations which canna provide an acarate
insight into the states of a red-time simulation. While they
may confirm simple interadion, pre-determined sounds
minimize the aoustic relevance of the degrees of freedom
in asimulated system.

If audtory feedbadk can improve the user's oatial
orientation and sense of red-time interadion, then why is
VR audio typicdly limited to triggering pre-recorded sound
file or MIDI file playback? A short answer is “there ae no
standard aternatives.” Unlike the comprehensive hardware
solutions provided by proprietary graphics subsystems,
there have been few vendar-supported efforts toward sound
synthesis sibsystems. Historicdly it has proven difficult to
argue for the commercial profitability of soundsynthesis on
general computing platforms.

There ae severa problem areas to establish and
maintain a flexible aidio development subsystem in
VR. These include red-time scheduing and
synchronization of sounds, graphics and control signas
from interadive sensors. At a higher levd of
abstradion, grammars are neaded for describing sound
synthesis in relation to VR models and events.
Traditional audio paradigms guch as multi-tradk
recording and sample-based o  orchestra-score
descriptions of sound production, were developed in an
era when virtual experiences could only be imitated.
From our experience these paradigms are not
compatible with the herent spatia and temporal
models central to VR.

In this paper we discuss ®und production and
performance that optimize the interadivity of model-
based virtual systems. We present a cae study of aVR
installation cdled Coney Idand. The functiona
software roles of the Coney Island architedure include
(1) a VR authoring and rendering system, (2) Sound
Synthesis engines, (3) Spatiadl Audio DSP, (4) Sound
Authoring, and (5) Scheduling and Synchronizaion o
sounds with graphics and simulations. Software from
severa reseach centers was combined to fill these
roles. (1) A VR authoring environment cdled
ScoreGraph (Choi 1998) was used to creae the Coney
Island simulations, graphics, message passng and
interadive scheduling. ScoreGraph provides the cntext
that determines the requirements for interoperability of
sound production modules. (2) Sound synthesis was
provided by VSS (Bargar 1994), including synthesis
engines from the STK todlkit (Cook 1995), and by
jMax. (3) Distance ad dredional cues for sound
sources were generated using Spatiali satuer (Spat) (Jot
1995) running in jMax. (4) VSS peforms VR data
interpretation to generate synthesis parameter control
messages. (5) These messages are exchanged and
scheduled in red-time by ScoreGraph and VSS. Our
discusson will proceal from the VR environment to the
VR software achitedure, and then to sound production.



2. The Coney Idand Scenario

Coney Island is a VR install ation designed to explore and
demonstrate alvanced auditory display of spatial and
temporal models’. The installation provides an interadive
tour of an archipelago of medchanized islands that comprise
a fantastic canival playground The islands are driven by
simulated medhanics and particle system dynamics, as well
as advanced geometric, lighting and camera models for
computer graphics. For ead isand MIDI-enabled drum
pads alow up to ten observers to play simultaneously.
Simulations provide a time-criticd environment where
players can impart forces and see ad hea the resulting
medhanicd adions and particle system colli sions. The tour
continues underwater where the players can impart force to
currents that adivate sound-producing clusters of floating
objeds. In eat case equations of motion convert the forces
into motions of graphicd objeds and in parale into
sounds.

Coney Island was designed as a cae study for close
couging of audio signal processng to spatial and temporal
VR paradigms. Multiple independent sound-producing
events are determined by sensor data @mbined with
simulated mechanics of rigid pdygona bodies and perticle
systems. Sensor, graphic and sound events must be
scheduled to provide satisfacory tempora feadbadk. At the
same time overlapping audio events must be rendered in a
spatial model that allows eat player the proper orientation
with resped both to a view of the virtual world and a
position in the red world adjacent to ather players.

Figure 1: Coney Island setup at IRCAM

Har dware Configuration

IRCAM Studio 5 was arranged with a large-format video
projedion onthe wall opposite its entrance Graphics and
simulations were rendered in ScoreGraph on an SGI Onyx
and the image transmitted to the projedor. Figure 1 shows
ten MIDI-enabled drum pads positioned in the ceanter of the
installation fadng the projedion screen, with a solo
joystick on the left and sound computation hardware on the
right. Signals from players adions were inpu to
ScoreGraph simulations, and the resulting movement
events pased to graphics and sounds. Figure 2 shows a
group d players at the IRCAM install ation; Figure 3 shows
the players' view of a Coney Iland scene.

! Coney Idland was presented at IRCAM during the June
1999 Portes Ouvertes.

The sound system consisted of three multi-channel
computer sound sources, a mixer and a 4-channel
diffuson system with monitors positioned in the
corners of the room. Audio software performed in real-
time on linux, NT and Irix platforms. Data was
transmitted from ScoreGraph to VSS and from VSS to
jMax using udp. Audio sourcesincluded 2-channel VSS
on Linux and NT PCs, 2-channel jMax on Linux PC
and 4-channel jMax on an SGI Octane.

Figure 2: IRCAM visitors interact with Coney
Island simulations using MIDI drum pads.

3. Coney Island: VR architecture and graphics
Coney Idand uses a software framework named
ScoreGraph to organize its numerical simulations and
interactive graphics, to manage input from a user
interface, and to send audio control signals to VSS.
ScoreGraph is a system for authoring and managing the
presentation of interactive, rea-time graphics and
sound applications. ScoreGraph provides a scheduler
and libraries for data computation and multi-threaded
communication. A ScoreGraph application consists of
reusable software modules written in C++ and a script
that specifies the configuration and behavior of those
modules a runtime.  Application components are
roughly divided into input devices, computational
models, and graphics and sound displays. Individual
components, called nodes, are organized into a directed
graph, the edges of which represent control signal flow.
When the application is run it is organized into parallel
threads that manage the execution of its nodes. The
service rates of the threads are independent of each



other (and, notably, independent of the graphics frame
rate), and may in fad change as the red-time system
evolves. Coney Island integrates user input from ten MIDI
drum pads, physicdly-based mechanicd simulations, and
threedimensional geometric models creded with
Alias|Wavefront's Maya. The gplication runs on a four
procesor Silicon Graphics Onyx 2 with an Infinite Redity
2 graphics board.

Graphicsand Particle Simulations

The visua space presented in Coney Island includes five
idands floating on top d ocean waves, eah o which
contains a mechanicd game. The games are similar to
pinball: users apply forces to move particles toward some
goal. Ead idand consists of a hierarchicd geometric
model creaded in Maya, and a physicdly based particle
simulation to drive the animation. The particle systems
model the forces applied by the user, particle mllision
against other particles and against three dimensiona
geometry, particle mass and radius, gravity, and friction.
The differential equations used to compute the physicd
simulations require a onsistent service rate, which was set
to 20 Hz. Unfortunately, the graphics frame rate is not
predictable, and at a given time fallsin the 12-15 Hz range,
depending upon which island is being visited and how
much particle adivity there is. Therefore the particle
simulations and OpenGL rendering code ae run in distinct
parallel processes.

I nter active Presentation and L arge-scale Form

The Coney Island experience is organized as a tour of the
islands, with periodic transitions underwater to tour the
debris leftover by the history of gaming ontheislands. The
computer graphics camera travels to ead region where
visitors gend some time interading. Although the overall
organization and quality of the presentation is spedfied by
the environment’s designers, many of the details of the
presentation, in particular the canera angles and the order
and timing of events, are ontrolled by intelligent
algorithms. During the tour, the order in which the islands
are visited is chosen at random, athough ead idand is
visited orly a single time. Once & an isand, the system
bemmes sengitive to the level of user adivity. If thereis
no immediate user input, the game will demonstrate itself
by briefly running automaticdly. An agorithm choaoses
camera pasitions and camera aliting patterns, based upon
which perts of an island are adive due to user input. The
camera dgorithm is designed to produce results that make
sense dnematicdly and help explain the operation of the
game medhanisms. After a game has been running, a new
island will bevisited if the amourt of input dies down.

A basic fedure of the ScoreGraph system is that the
direded graph that organizes an applicaion can be
reconfigured as it runs. New processes can be started,
existing proceses may be shut down o reduced in
computational load, and connedions between nodes can be
made or broken. In Coney Idand this occurs ead time an
idand is visited. The drivers for the MIDI drum pads are
reconfigured to control a different medhanism. A new
particle system is garted and the previousy running
simulation is dwt down. This provides a smocth scene

change between processes that are essentialy separate
applicaions.

4. Coney Idland Sound Production
Coney Idland includes three dasses of interadivity
with sounds:
» adion spaceperformance and extended causdlity;
e adive navigation and dred manipulation of
synthesis parameters;
»  passve navigation and paitiona influences upon
auditory spacein environmental dynamics.

Action spaceperformance generates unds from user
adions gnchronized to motion-based events
displayed graphicdly. Players influence sound
production by engaging with motion simulations, an
application of the Generative Medhanism principle
discused by Choi (2000a). Medhanicd frictions and
particle allisions in the islands are gplied to control
STK physically-based and moda  synthesis
instruments, creding quasi-redistic friction and
collision sounds; at the same time the data is applied
to granular synthesis implemented in jMax to produce
particles of speet. The palette ranging from realistic
to metaphaicd sounds is a @mpaositional design
applied to virtual locations and simulated mechanics.
The Coney Island grand tour brings about transitions
from redistic to metapharicd sounds, redized at the
level of the sound perticle. Underwater locdions
abandon redism in favor of granular speed
asemblages determined by wave ejuations dirred up
by percusson ped forces.

Active navigation and dired manipulation of synthesis
parameters occurs in seled underwater regions where
asingle player may use ajoystick to navigate asmall
animated submarine. The VR camera follows
automaticdly. The submarine is constrained to
traverse floating abstrad surfaces, and its position on
eadh surface is applied to the tuning of sound
synthesis parameters by mapping position to a high-
dimensional parameter control space(Choi 2000b). In
these regions the particles of speedqr may be
transformed into intelli gible phrases.

Passve navigation with positional influences occursin
regions where the sounds are determined by dynamics
that are independent of the players' adions, while the
position of the camera determines adivation d the
sound sources and spatidizaion of the resulting
sounds. These sound sources are distributed in a
designated region wder the idlands, represented
visually as a field of floating historicd debris. When
adivated by camera proximity these debris emit
complete speed excerpts from historicd recordings.
Four paralel Spat patches in jMax simultaneously
process four source positions to crede distance ad
diredional cues. The camera position adivates no
more than four sources smultaneously so that al
sources may be scheduled in ore of the four Spats.



jMax Configuration

Despite its architedure that offers interesting feaures for
a use in a distributed applicdion framework, the jMax
environment is used most of the time & a ~“standalone”
application. An applicdtion as a synthesis engine
integrated in a larger distributed applicaion have been
approached in a previous version of jMax, the MAX/FTS
environment, with its multi-client capabilities (Dechelle
1995, Dedhelle 1996). However, the use of jMax as a
synthesis engine driven by data cming from another
environment has not been tested prior to the
implementation d the Coney Island install ation.

The dosen implementation hes been to add to jMax
network communicaion oljeds, using UDP as transport
protocols. The udp objed receves on a UDP socket a
stream of datas of simple types (numbers and strings),
encoded with the same protocol as used in the
communicaion between jMax's AV A user interface ad
red-time server (Dedhelle 1999a, Dechelle 1999b). The
udp objed outputs messages that can be procesed by a
usual control patch. The udp objeds were used to recave
from VSSdata coming from the virtua redity processng.
The formatting and scding was then redized by patches
using the standard jMax objeds «t, and the results were
used to drive both granular synthesis and Spat. The choice
of this architedure offers sveral advantages: portability,
inter-operability, flexibili ty and good latency.

VSS Configuration

VSS communicaes with several other red-time audio
protocols, such as Midi, OpenSound Control (Wright
1997), red-time ado streaning, RAT Mbore
telemnferencing (Varakliotis 1998), and Jmax. This
flexibility has alowed VSS to be used for diverse
integrated applicaions: Midi controllers driving software
sound synthesis; data from scientific gpplicaions driving
Midi and OpenSound Control sound generators; streaming
sound and control data from a musicd instrument to a
Max patch running on a computer aaoss campus, and
then streaming the sound badk to the instrumentalist; and
in the present case, sending control signals from a virtual
environment (VE) to a red-time 8-channel sound
spatializer (while another VSS, also controlled by the VE,
computes the sound keing spatialized). All this can be
dore with VSS running under operating systems including
severa versions of Irix, Linux, and Windows.

Such interoperability is made possble by VSSs flexible
internad message-passng architedure, and by its low-
overhead C++ dass hierarchy. C has beaome ade facto
machine-independent aseembly language; most packages
have alow-level interface written in C or C++, and it has
proven fairly straightforward to embed such interfaces in
wrappersin the form of shared libraries (DSO'sor DLL's),
which ishow all but the very core of VSSis constructed.

The onredion between VSS and Jmax is built on an
internet-domain socket. As far as Jmax is concerned, VSS
looks like just ancther Jmax patch running on a remote
madine. First, this "patch" in VSS is initidized to
establish a ommunicaions scket with a hostname and

port number, where it expeds Jmax to be listening.
Then it can recéve mmmands from other parts of
VSS (other "adors') which cause it to send data
messages through the socket. Upon termination, it
closes the socket cleanly. Part of this install ation used
both Jmax and VSSon the same machine. In this case
VSS aded solely as controller, not synthesizer, so it
did not need to access the sound hardware; Jmax
therefore had its usual exclusive acessto the sound
hardware.

The format of the data messages ent from VSS to
Jmax is an internal Jmax format. The C source @de
which encodes and demdes these messages into C
structures was provided by IRCAM. The VSSshared
library correspondngly encodes and deaodes these C
structures into the messge format internaly
understood by VSS. For this projed a simple interface
sufficed. From the point of view of other adors in
VSS, the Jmax ador was omething to which they
could send a command in the form of a small number
of strings, integers, and floating-point numbers. This
involved a cetain amourt of copy/pasting in the C++
code, but kept the code simple and reliable; thiswas a
primary concern given the short amount of testing and
stabili zing time we had. A more genera interface
would alow arbitrarily long argument lists, but would
also demand a formal description d such lists insteal
of encoding instances on a ca&e by case basis. We
considered streaming the individual audio channels
from VSSto Jmax over Ethernet, but the posshility of
dropouts was a cncen (eight uncompressd 441
KHz audio signals, a sustained rate of over 5 megabits
per semnd, is impradicd over 10bese-T ethernet).
Since the computers running VSS and Jmax were
physicdly close to ead ather, an ADAT opticd audio
cable sufficed for our application.

5. Discussion

From Coney Island we ae @le to assessfour areas for

further development:

1. diagnogtic tods for aiding the aossplatform
couging of software synthesis modues,

2. middeware for coordinating virtual environments
and audio architedures,

3. multiple-user solutions  for
environments, and

4. sound feedbadk for enhancing group interadion

interadive

(1) The ingtallation demonstrates that it is feasible
with current operating systems to redize adistributed
red-time gplicaion combining virtual redity and
complex sound pocesing. But once the
communicaion architedure is established, a dee
ladk of anaysis and debugging tools bemmes
obvious: the global latency, from user adion to sound,
canna be measured, and no guarantee ca be given on
its upper bound. The use of MIDI to transmit users
adions was the source of greaest latency: an
intelligent MIDI filter was required in ScoreGraph to
discard redundant values when user adivity increased.
Without the filter when latency increased users tended



to reped their adions as they seached for the system
resporse, exacebating the delay. Potential diagnostic
methods are discussed by Brandt (1998).

(2) The independent Sound Authoring layer of VSSwas a
useful mediator for interpreting VR data and converting it
into synthesis instructions for both jMax and VSS
Although V SS supports alibrary of synthesis engines, the
Authoring architedure functions as an independent midde
layer which can be gplied to control alternative sound
production engines once message-passng has been
implemented. During Coney Island development the
question was raised why VSS Authoring and scheduling
cgpahiliti es could na be implemented as ajMax subpetch.
The VSSarchitedure is edficdly designed to separate
the process of data transformation and synchronization
from particular sound synthesis patches or languages. In
Coney Island this division o labor made it posdble to
combine the optimal cagpabiliti es of VSS and jMax: red-
time STK instruments in the former; granular synthesis
and Spat in the latter. This agnostic position with resped
to sound production is relevant for the further
development of independent red-time synthesis engines
on multi ple platforms.

(3 - 4) Coney Island extends previous VR composition
projeds at NCSA by investigating strategies for muilti-
user participation. From a musicd perspedive we
examine the modernist proposition to “engage the
audience”, anticipating wired/wireless networked and
distributed participants. Techndogy changes the audience
engagement problem into a perceptual feedbadk problem:
if an entire audience participatesin amusicd performance
then haw do they know what they are doing? And how do
they remgnize the results of their adions? VR
applications typicdly avoid shared representations by
providing a single-user first-person “shoacter” perspedive.
One person, one point of view, one ntrol providing
isolated feaedbadk requiring minimal disambiguation. The
relevance of audio deaesses with the deaesse of
ambiguity.

Multi-player solutions are needed. We propose
development of compasition solutions to acommodate a
topology of interacting observers. By sound enhancing
group interadion we @wision dternatives to the
isolationist perspedive. Coney Idand adopts a 1:1
feedbadk system: ead player controls a unique objed
(avatar); avatars dare a common dsplay space
movement constraints and camera aitomation ensure that
players can see ad hea their avatars at all times. The
scdahility of this approach for large audiences is
guestionable. Statisticd methods are a cadidate for
further investigation Devices such as MIDI drum pads
bypass the neal for technicd expertise & the interface
But the feadbad problem remains. to encourage group
interadion while displaying the relevance of interadive
input from ead participant.
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