
Effective Browsing of Long Audio Recordings

Camille Goudeseune
Beckman Institute

University of Illinois at Urbana-Champaign
Urbana, Illinois, 61801 USA

cog@illinois.edu

ABSTRACT
Timeliner is a browser for long audio recordings and fea-
tures that it derives from such recordings. Features can be
either signal-based, like spectrograms, or model-based, like
categorical classifiers.

Unlike conventional audio editors, Timeliner pans and
zooms smoothly across many orders of magnitude, from
days-long overviews to millisecond-scale details, with zero
latency, zero flicker, and low CPU load. Also, to suggest
which details are worth zooming in to examine, Timeliner’s
agglomerative hierarchical caches propagate feature-specific
details up to wider zoom levels. Because these details are
not averaged away, “big data” can be browsed rapidly and
effectively. Several studies demonstrate this.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems—audio input/output ; H.4.3
[Information Interfaces and Presentation]: Com-
munications Applications—information browsers; H.5.5
[Information Interfaces and Presentation]: Sound and
Music Computing—signal analysis, synthesis, and process-
ing

General Terms
Algorithms, Human Factors

Keywords
Deep Zoom, Big Data, Mipmap

1. INTRODUCTION
Human audition of acoustic events often outperforms au-

tomatic detection, but it fails for long recordings. High-
speed playback helps only slightly: even continuous speech
can rarely be understood faster than twice normal speed [1].
Long recordings are fatiguing, because uninterrupted alert-
ness is needed to notice brief transient events.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMMPD’12, November 2, 2012, Nara, Japan.
Copyright 2012 ACM 978-1-4503-1595-1/12/11 ...$15.00.

However, human vision helps. Visualizations at a range
of temporal scales can efficiently eliminate long uninterest-
ing intervals. Synchronizing such visualizations with audio
playback then lets a user search visually (that is, rapidly),
only occasionally taking time to briefly listen to intervals
deemed visually interesting. This multiscale, multimedia ap-
proach is used by an audio browser, Timeliner, whose design
and implementation this paper describes. Timeliner itself is
open-source and available for download [8].

Timeliner’s source data is an audio recording, hours or
even days long. It displays features derived from this record-
ing as stacked images, horizontally synchronized with the
waveform and a time axis (Fig. 1). Features include spectro-
grams [5], Mel-frequency cepstral coefficients (MFCC’s) [16],
spectrograms transformed to reduce the visual salience of
non-anomalous events [14], and output log likelihoods from
event classifiers [24, 25].

The features themselves are rendered purely visually, with-
out audio, because aural search is comparatively slow. In
this multimedia context, the most effective role for audio
presentation is brief testing of hypotheses that were formed
while searching visually. The source recording itself is of
course the ground truth for such tests, but audio-presented
features could help as well (although this is not currently
implemented). For example, in speaker diarization, the vi-
sual presentation of a categorical classifier for a particular
person could be augmented with audio resynthesis tailored
to extract just that person’s voice.

Figure 1: Timeliner’s display: features (here, a sin-
gle spectrogram), waveform (green), and time axis
(blue).

35

Initially, Timeliner presents the whole recording to the
user, who can then zoom in to interesting areas to rapidly
find even very brief anomalous segments. Commodity mo-
bile computers running Timeliner smoothly zoom across six
orders of temporal magnitude.

Conventional audio editors compute the appearance of
each horizontal extent of a pixel by undersampling data from
the corresponding time interval. But in Timeliner, such in-
tervals might be minutes long. During a fast pan or zoom,
such extreme undersampling would produce flickering strong
enough to entirely obscure the data. This would negate the
benefit of such continuous pan-and-zoom gestures, which are
natural to handheld devices and to be contrasted with for-
mulating database queries at a keyboard.

To restore smoothness, Timeliner builds a multiscale ag-
glomerative cache for the recording and for each derived fea-
ture. Such a cache efficiently reports the minimum, mean,
and maximum data values found during a temporal subin-
terval, either for scalar data such as the recording itself, or
for vector data in HTK format [23]. Final rendering assigns
a color to each texel, using a color map particular to that
kind of data (see Sec. 3.3).

The cached vector-format data is itself summarized pyra-
midally and moved to graphics memory. This yet again im-
proves performance by freeing main memory to store longer
recordings, and by exploiting the GPU. Even at full-screen
resolution, the relatively slow CPU and main memory bus
of mobile computers running OpenGL ES or its derivative
WebGL are only lightly loaded.

Timeliner runs natively on Ubuntu Linux. It requires two
external software packages, HTK 3.4.1 and, to display fea-
tures derived from pre-trained neural networks, the software
suite QuickNet [7].

File parsing and interfacing to external utilities are both
implemented in the scripting language Ruby. Numerical
computation uses C++, to both increase speed and con-
serve memory. Graphics are rendered with OpenGL and its
utility toolkit GLUT.

1.1 Long recordings on mobile devices
Handheld audio recorders that store recordings on inex-

pensive memory cards originally marketed for cameras have
become common, but they need some persuading to pro-
duce useful multi-hour recordings. Recording may need to
be restarted when the data file reaches 2 GB or 4 GB on a
FAT16- or FAT32-formatted card. Automatic power-down
may need overriding, and short battery life may even de-
mand an external power supply.

Finally, devices not dedicated to audio or lacking an ad-
vanced operating system often suffer from an automatic gain
control that cannot be disabled. But this is rarely a problem
when the mobile device doing the recording is the same one
that will be used for browsing with Timeliner.

2. PREPROCESSING
A Ruby/C++ preprocessor prepares data for the C++

browser. This lets the latter start very quickly, a conve-
nience for consecutive or even simultaneous browsing ses-
sions. If the preprocessing happens immediately after the
unavoidably slow act of recording, its own duration is negli-
gible.

The preprocessor computes features from the recording
with the help of external packages. These features, and the

recording itself, are then read as memory-mapped files and
then rewritten as serialized data, that is, pre-parsed data
structures that the browser will load directly from disk. The
preprocessor is given the following:

• a source recording in a format understood by the audio
utility sox, such as .mp3 or .wav

• the directory that will contain the serialized files

• how many channels to use when computing spectro-
gram and MFCC features

• optionally, a directory of short easter-egg sound files,
named such because the preprocessor “hides” them in
the source recording, for tasks that measure Time-
liner’s effectiveness (see Sec. 6).

For uniform graphical presentation, the preprocessor also
normalizes each feature’s data to the unit interval.

Because HTK incorrectly rounds sampling duration to the
nearest exact multiple of 100 ns, common sampling rates
other than 8 kHz or 16 kHz (exactly 1250 or 625 multiples
of 100 ns, respectively) result in a drift in reported time.
This may be tolerable for recordings lasting a few seconds,
but not for a few days. The preprocessor therefore sim-
ply resamples the source recording at 16 kHz, a surprisingly
common sample rate for speech processing [13, 15].

2.1 Vector-format features
Features are computed from the source recording with a

sliding Hamming window. The window’s size and skip can
be tuned for particular kinds of recorded material. Each
feature is written to disk in HTK format [23].

Spectrogram features are computed with HTK’s filterbank
feature. Saliency-maximized spectrograms convolve a stan-
dard spectrogram with a saliency-optimized filter computed
by an external Matlab script [14].

Daubechies wavelet features use the Gnu Scientic Library
(GSL) implementation. At the specified sampling rate, 32-
sample intervals from the recording are convolved with a
Hamming window and passed to GSL. The result from GSL
is then stored in HTK format.

Features that are based on neural networks, such as cate-
gorical classifiers, are computed with tools from the software
package SPRACHcore [6], in particular the utilities feacat
and qnsfwd from its neural net code QuickNet [7]. First,
feacat builds a ‘pad’ file from the source recording. Then,
using a file containing weights from a pretrained neural net-
work, qnsfwd converts the pad file to an ‘act’ file. From
each line of this file, the floating-point weights of features
are extracted and stored in HTK format.

One specialized feature is an unusual classifier, for use
with easter eggs (see Sec. 6). If easter eggs are specified,
they are combined with the source recording. When an egg
is placed, its audio signal comes from a uniformly randomly
chosen source egg, and its amplitude is also scaled randomly.
The number of eggs placed is chosen to fit a specified den-
sity of eggs per unit time, usually no more than a few eggs
per minute. Eggs are distributed randomly and uniformly
without overlap, subject to the constraint that at least a
specified minimum duration separates consecutive eggs.

For convenience when testing, an oracular “perfect” clas-
sifier indicates the locations of easter eggs. At each sample
period this feature’s value is 1.0 or 0.0, as that period does
or does not contain an easter egg.

36

3. AGGLOMERATIVE CACHE
Recall that Timeliner’s agglomerative caches are used to

efficiently extract summary values, such as the maximum
or the mean, from a subinterval of values from either the
recording or features derived from it.

3.1 Construction
The cache is built as a rooted binary tree, starting from

the leaves. A leaf node corresponds to one sample of data,
and stores that sample’s value. In the next layer of the
tree, each node’s payload stores the minimum, mean, and
maximum of the two values of its children. The payload
also stores the number of samples that its children represent
(in this case, two). This pattern propagates up to the root
node.

Elementary arithmetic computes a parent node’s payload
from its children’s: the parent’s minimum is the minimum
of its children’s minima, etc. It is only worth noting that
the mean can be computed only if the payload includes the
number of samples. (To avoid roundoff error, the mean is
calculated in double precision. All other calculation and
storage uses single precision to conserve memory.) When a
layer in the tree has an odd number of nodes, the final node
in the next layer up of course gets only one child, from whom
its payload is copied verbatim.

Memory is significantly conserved by giving the leaves a
payload with only one value, instead of the four used by non-
leaf nodes. This single value is vacuously its own minimum,
mean, and maximum. Similarly, the number of samples is
vacuously one and thus need not be stored.

To conserve even more memory, but at the cost of coarser
temporal resolution, leaves may store more than one sam-
ple. Storing n consecutive samples in each leaf reduces the
number of nodes (and hence the cache’s memory footprint)
n-fold, but limits zoom-in to a resolution n times coarser.
This trade-off is particularly useful for the cache of the dis-
played waveform, if visible submillisecond detail would not
assist a browsing task.

For vector-valued data such as a spectrogram’s coefficients
during a given sampling period, or even just stereo source
recording, each node can store not just one payload but a
whole set of payloads, one for each element of the vector.

3.2 Querying
Given any time interval, that is, a contiguous subset of

samples (a duration), the agglomerative cache returns that
interval’s payload, as generalized from the definition of a
node’s payload. Unsurprisingly, the cache does so by com-
bining payloads from nodes. The number of nodes visited
is proportional to the depth of the binary tree. This is of
course logarithmic with respect to the recording’s total du-
ration, and independent of the interval’s own duration, so
queries are fast.

Combining payloads starts at the root node. At each node
visited, if the node’s time interval is disjoint with the query
interval, it is discarded. If the node’s interval is contained
within the query, it is kept. Finally, if the node’s interval
overlaps partially with the query, testing continues with the
node’s children, down to the leaves. (Leaves are detected
from their uniform depth in the tree, because this has no
space penalty and negligible time penalty.) As this recursion
unwinds back up the tree, payloads are combined with the

same elementary arithmetic that was used to construct the
cache in the first place.

3.3 Color maps
To reduce calling overhead, the functions that query the

cache return not just individual payloads but entire arrays
of them. These payloads may also be immediately convolved
with a color map, thereby returning an array of colors ready
for rendering with an OpenGL texture map.

A general color map converts an individual min-mean-max
payload to a hue, saturation, and value (HSV), which in turn
is converted to a red-green-blue triple. The extra step is
warranted because HSV color space better matches human
visual perception. (Hue means “rainbow color,” saturation
means lack of grayness, and value means brightness.)

In practice, Timeliner constrains a color map f : R3 → R
3

by decomposing it into two parts, f : R3 → R
1 → R

3. The
first part computes a weighted sum of the payload’s com-
ponents. The second part uses that sum to interpolate be-
tween two endpoints of a color gradient. HSV variations
between the endpoints then determine those variations in f
as a whole. Because this decomposition constrains the image
of f to a straight line, these three variations are not truly
independent. But the decomposition also quadruples how
much data can be browsed, enabling longer duration, finer
temporal resolution, finer frequency resolution, and combi-
nations thereof (see Sec. 4.1.3).

For example, when defining a color map for a spectro-
gram fine enough to resolves individual sinusoidal compo-
nents, a weighted sum that uses only the maximum best
reveals these sinusoids. At coarser frequency resolutions,
some of the maximum’s weight should transfer to the mean,
to avoid confusing actual sinusoids with narrowband noise.

Figure 2: Monochrome spectrogram of one minute
of orchestral music (darker areas are louder). Pay-
load weights, from top to bottom: 100% minimum,
100% mean, and 100% maximum.

37

Conventional pure-mean spectrograms can be assisted by
slightly weighting the maximum. This is because every-
day spectra are asymmetric, with more peaks than notches.
Fig. 2 demonstrates this: the pure-maximum weighted color
map has more prominent dark amplitude peaks than the
pure-mean one, while the pure-minimum one suffers from
both reduced visual contrast and white-dot clutter. Con-
versely, notch-dominated absorption spectra such as those
produced by time-domain spectroscopic optical coherence
tomography [22] demand a mean-with-minimum weighting.

Similarly, classifiers of anomalous events that represent
presence as rare high values and absence as common low val-
ues, such as the easter egg oracle, should ideally emphasize
only maxima (Fig. 3, top). This is because a pure maximum
weighting preserves the visibility of even the briefest events
at the widest zooms. If the classifier suffers from false pos-
itives, the maximum can be diluted with the mean, which
averages away such noise (but also detail: Fig. 3, middle and
bottom).

Traditional printed speech spectrograms or ‘sonograms’
use endpoints of pure black and pure white (again, Fig. 2).
Endpoints whose hues differ let the resulting image allude
to heat and cold (Fig. 1), highlights and neutrality (Fig. 3),
or other artistic metaphors. Endpoints with similar hues are
useful when many features are displayed simultaneously, as
with a bank of categorical classifiers: this reserves hue for
distinguishing between categories, a task it is particularly
good at.

4. GRAPHICAL RENDERING
Timeliner’s unusual attributes force all of its displays—the

recording’s waveform, the features derived from the record-
ing, and even the time axis itself—to be rendered in unusual
ways. These methods are elaborated here.

4.1 Mipmaps of derived features
Instead of expensively computing a texture map from the

feature data many times per second, Timeliner precomputes
texture maps just once. Because it cannot compute an in-
finite continuum of these, it computes them at only a finite
number of resolutions. At any given zoom level, the two
texture maps closest to that resolution are interpolated to
produce the final display. Each texture map is one “level” of
a mipmap, which is a venerable anti-aliasing technique for
texture maps applied to three-dimensional scenes. Timeliner
abuses this technique in a merely two-dimensional situation.
(Like Timeliner’s agglomerative cache, the mipmap was in-
vented to eliminate flicker induced by subsampling [20].) As
a performance bonus, the inter- and intra-level interpolation
of textures is calculated by the GPU instead of the CPU.

Because OpenGL’s two-dimensional mipmaps cannot scale
in only one of two dimensions, Timeliner resorts to more
seldom used one-dimensional mipmaps. (A possible alter-
native is the anisotropic mipmap called a ripmap [11, pp.
61–62], but in this specialized application it uses memory
inefficiently [12]. At any rate, neither OpenGL nor com-
modity GPUs implement ripmaps.) These mipmaps tile to
cover the width of the full data. Each tile is as wide as
possible, to reduce overhead in graphics memory.

4.1.1 Non-optical mipmap levels
Conventionally, each level of a mipmap is derived from its

next higher-resolution level, often by just averaging texels.

Figure 3: Thin slices of screenshots of an event clas-
sifier zoomed from 8 hours to 10 seconds. The 48
(yellow) events have duration 1 to 4 seconds. From
top to bottom: 100% maximum; 50% maximum and
50% mean; 100% mean.

Advanced filters and windows sometimes elaborate this [3,
4], but the basic mechanism of computing one level from the
previous one remains. Such a mechanism fails here because
the source data is not optical. In a deliberate violation of
optical principles, we wish to preserve the visibility of in-
teresting details across all resolutions (see Sec. 3.3). Thus,
each level of the mipmap must be computed directly from
the original data. Each texel, at each level of the mipmap,
spans a particular interval of data. That data, efficiently
summarized into that interval’s payload by the agglomera-
tive cache, then yields that texel’s color.

4.1.2 Information rate
Because a mipmap interpolates between a finite number

of zoom levels, it merely approximates the output of the
agglomerative cache. But this subtle quantization noise is
practically invisible, especially when actively panning and
zooming. The corresponding advantage over non-mipmap
rendering is typically a tripled information rate, measured
in texels per second (on commodity mobile computers with
so-called dedicated graphics, as opposed to less expensive

38

“integrated graphics” subsystems that steal main memory
for the GPU).

4.1.3 Conserving graphics memory
To quadruple how much data can be browsed, each texel

is stored in only 8 bits, instead of in the more conventional
32-bit red-green-blue format (GPUs internally pad 24 bits
of RGB to 32). More precisely measuring information rate
in bits per second rather than texels per second, reducing
each texel’s size from 24 visible bits of color to only 8 would
seem to reduce the information rate threefold.

In practice, however, the information rate is reduced less
severely. First, the payload’s weighted sum often has one
or more zero weights: the whole payload is not exploited.
Second, because the payload’s three elements are somewhat
correlated in everyday circumstances, squeezing the payload
into 8 bits rather than 24 does not hide entirely two thirds of
the raw information about its underlying statistical distri-
bution. Third, smaller texels generally increase the GPU’s
performance. One quarter as many bytes need to be fetched
from the GPU’s memory, so its internal caches are better
exploited while rendering mipmaps. This improved perfor-
mance reveals itself as higher resolution and frame rate. In
other words, fewer bits per texel is countered by more texels
per frame and more frames per second. Their net product,
bits per second, may even increase rather than decrease.

4.2 Audio waveform
Even though a displayed waveform reveals little more than

peak amplitude, its sheer familiarity justifies devoting part
of the screen to it. To extract slightly more information
from this part of the screen, then, the waveform’s amplitude
auto-scales to match what is currently on screen. The un-
scaled display is bright, but possibly of near-zero amplitude.
Behind that, the scaled display is dimmer (Fig. 4). Dimness
varies with scaling, to prevent unusually large blobs from be-
coming excessively salient. Also, to reduce flicker artifacts
when quickly zooming or panning, the auto-scaling is slew-
rate limited. (The rates for increasing and for decreasing
the scaling differ, like an audio dynamic range compressor’s
attack and release controls.)

Recall that with recording-derived features, the agglomer-
ative cache is used only to construct mipmaps. For waveform
display, however, the browser uses the cache without any
such indirection because, again, two-dimensional mipmaps
cannot scale in only the horizontal dimension.

Figure 4: Detail of waveform display. The bright
waveform’s amplitude remains nominal, while the
dim waveform behind it auto-scales to fill the allo-
cated on-screen height.

Figure 5: Detail of time axis display.

4.3 Time axis and warnings
The bottom of the screen shows a temporal axis, but with-

out textual and numerical clutter (Fig. 5) that merely dis-
tracts while actively browsing. Abbreviated units such as d
for days or 10s for ten seconds hint at the display’s zoom
level. When zoom level changes, some units fade out while
others fade in.

Behind these abbreviations, a faint white-noise texture
provides optic flow during pan and zoom, even if on-screen
flow is momentarily absent elsewhere as when displaying an
interval of silence. This “infinite” texture is implemented as
multiple layers of a single texture, which crossfade in opacity
like the components of a Shepard-Risset glissando crossfade
in amplitude [19]. (With a Perlin noise source, such infinite
noise textures work in higher dimensions [2]; even arbitrary
images can produce infinitely zoomable textures [9].)

To represent the fraction of the whole recording that is
on-screen, the noise texture is overlaid with an indicator
like the thumb of a scrollbar (the short bright-green patch
in Fig. 5; also barely visible at bottom middle in Fig. 1).

If a pan or zoom-out tries to go past the start or end of the
recording, a red flash at the start or end (or both) alerts the
user of the limit being hit. Similarly, an attempt to zoom
in beyond the data’s resolution produces a yellow warning
flash at the left and right edges of the screen.

5. OPERATION
Pan and zoom can be done with either the mouse or key-

board, whichever a user finds most familiar. However, the
keyboard is faster for two reasons. First, panning by “paw-
ing” the mouse involves wasted backstroke motion. Second,
left-hand pan and zoom frees the right-hand mouse to have
the sole task of aiming at particular positions to listen to
sounds. The user’s gaze too is freed from hunting for keys,
because all the keys lie under the left hand without needing
to aim the fingers, in the wasd layout that became domi-
nant for mouse-keyboard real-time games in the mid-1990s.
Users familiar with a mouse’s scroll wheel for zooming in
and out can use that to zoom, too. On a mobile device’s
touchscreen, pan and zoom fit the familiar flick and pinch
gestures respectively.

To clarify optic flow despite noisy input gestures, both pan
and zoom are slightly smoothed with a simple IIR filter,
whose only sophistication is that it adapts to Timeliner’s
frame rate for identical temporal behavior independent of
the hardware’s capabilities.

5.1 Audio playback
After positioning a cursor (the purple vertical hairline in

Fig. 1) with a mouse click, tapping the spacebar starts play-
back from that cursor. Touchscreens need no separate posi-
tioning gesture: one tap both positions and commands play-
back.

A subsequent tap usually stops playback. But if the user
repositions the cursor during playback, that subsequent tap
immediately skips playback to that position, without an
intervening pause. On a touchscreen, the equivalent “skip

39

ahead” shortcut demands a different gesture such as a two-
finger tap. Not having to explicitly stop before each start
halves the number of taps, when briefly listening at many
places as Timeliner’s search strategy encourages.

During playback, a specialized playback cursor appears
and progresses rightwards. A mutex synchronizes its move-
ment with audio playback.

Audio is loaded as a memory-mapped file, for similar ben-
efits as when the preprocessor uses this technique.

5.2 Annotations
To mark the position of an interesting sound, the user

moves the mouse to the sound’s position and hits a key.
Touchscreens use either a double-tap or a tap-and-hold. The
annotation is confirmed by a brief flash fading to a vertical
hairline at that screen position. Another keystroke or tap-
and-hold lets the user undo the last annotation.

Upon exit, Timeliner logs the annotations to a text file.

6. EVALUATION
A central premise of Timeliner is that visual search for

interesting sounds is faster and more accurate than aural
search. Two scenarios have measurably demonstrated that
Timeliner’s smooth, deep zooming guided by helpful fea-
tures results in effective browsing and annotation of long
recordings.

The first scenario was at an uncontrolled, untutored lab-
oratory open house. Many young children used Timeliner
with a traditional spectrogram in the context of an “easter
egg hunt” game, racing the clock to find and mark brief
amusing sound effects (mooing, cuckoo clocks, motorcycles,
etc.) hidden in orchestral music [10]. This exhibit aimed to
teach the novel concept of time-frequency representations to
children aged about 6 to 13.

Figure 6: Rate of discovering anomalous sounds by
children using Timeliner, as a multiple of real time
(reproduced from Hasegawa-Johnson et al. [10]).

Had the children ignored or misunderstood the spectro-
gram, they would have found about as many sound effects
as they would have from real-time listening. In fact, most
found about three times as many, some upwards of seven
times as many (Fig. 6). The bimodal distribution of per-
formance was explained by informal feedback from partic-
ipants: the lower mode corresponds to children who used
an audio-visual search strategy, the higher mode to purely
visual search. (An even higher mode, far outside the plot-
ted figure, corresponds to friendly competition among the
graduate students staffing the exhibit.)

Figure 7: Rate of discovering anomalous sounds
by adult subjects using Timeliner, as a multiple
of real time. Timeliner displayed spectrograms
that were either conventional (top) or saliency-
maximized (bottom).

The second scenario was a controlled study using adult
subjects given a task of finding and annotating rare, quiet,
anomalous sounds that had been injected into long record-
ings of business meetings. Compared to conventional spec-
trograms, subjects’ F-score (a combination of precision and
accuracy) doubled when viewing saliency-maximized spec-
trograms [14]. In this more difficult task, subjects view-
ing conventional spectrograms found 1.5 to 3 times as many
anomalies as would be expected from real-time search. Sub-
jects viewing saliency-maximized spectrograms found con-
siderably more (Fig. 7). Because this study aimed to mea-
sure only the effectiveness of saliency maximization on spec-
trograms, other helpful features such as event classifiers were
not shown.

7. CONCLUSIONS AND FUTURE WORK
Timeliner demonstrates fast, effective browsing of record-

ings long enough to be otherwise intractable. Its flicker-free
deep zoom with zero latency on commodity mobile hardware
is made possible by both agglomerative caching and one-
dimensional mipmaps. Its user interface is straightforward,
efficient, quickly learned, and well suited to touchscreen and
mouse-and-keyboard.

By generalizing the agglomerative cache’s binary tree to
a quadtree or an octree, and then constructing mipmaps in
two or three dimensions, similar smooth browsing of two- or
three-dimensional data is possible. (Others have suggested
this for the special case of optical two-dimensional data: Sil-
verlight’s DeepZoomImageTileSource class implements this
in the context of serving images to a web browser plugin [17].
This has been adapted to large databases of scientific im-
agery [18, 21].) Fast browsing of large areal or volumetric
data will surely be as compelling as it is of time series.

40

8. ACKNOWLEDGMENTS
This work is funded by National Science Foundation grant

0807329.
The author thanks Mark Hasegawa-Johnson, Sarah King,

Kai-Hsiang Lin, and Xiaodan Zhuang for their technical ob-
servations and insights, Audrey Fisher for meticulous proof-
reading, and the reviewers for their helpful suggestions.

9. REFERENCES
[1] B. Arons. SpeechSkimmer: a system for interactively

skimming recorded speech. ACM Transactions on
Computer-Human Interaction, 4(1):3–38, 1997.

[2] P. Bénard, A. Bousseau, and J. Thollot. Dynamic
solid textures for real-time coherent stylization. In
Symposium on Interactive 3D Graphics and Games
(I3D), pages 121–127. ACM, 2009.

[3] J. Blow. Mipmapping, part 1. Game Developer
Magazine, 8(12):13–17, Dec. 2001.

[4] J. Blow. Mipmapping, part 2. Game Developer
Magazine, 9(1):16–19, Jan. 2002.

[5] D. Cohen, C. Goudeseune, and M. Hasegawa-Johnson.
Efficient simultaneous multi-scale computation of
FFTs. Technical Report FODAVA-09-01, NSF/DHS
FODAVA-Lead: Foundations of Data and Visual
Analytics, 2009.

[6] D. Ellis. The SPRACH project.
www.icsi.berkeley.edu/∼dpwe/projects/sprach, 1999.

[7] D. Ellis, C. Oei, C. Wooters, and P. Faerber. Quicknet.
www.icsi.berkeley.edu/Speech/qn.html, 2012.

[8] C. Goudeseune. Timeliner.
http://mickey.ifp.illinois.edu/speechWiki/index.php/
Software, 2012.

[9] C. Han, E. Risser, R. Ramamoorthi, and E. Grinspun.
Multiscale texture synthesis. ACM Trans. Graphics,
27(3), Aug. 2008.

[10] M. Hasegawa-Johnson, C. Goudeseune, J. Cole,
H. Kaczmarski, H. Kim, S. King, T. Mahrt, J.-T.
Huang, X. Zhuang, K.-H. Lin, H. V. Sharma, Z. Li,
and T. S. Huang. Multimodal speech and audio user
interfaces for K-12 outreach. In Proc. Asia-Pacific
Signal and Information Processing Assn., 2011.

[11] P. S. Heckbert. Fundamentals of texture mapping and
image warping. Master’s thesis, University of
California, Berkeley, June 1989.

[12] C.-F. Hollemeersch, B. Pieters, P. Lambert, and
R. Van de Walle. A new approach to combine texture
compression and filtering. The Visual Computer,
28(4):371–385, 2012.

[13] M. Huijbregts. Segmentation, Diarization and Speech
Transcription: Surprise Data Unraveled. PhD thesis,
University of Twente, 2008.

[14] K.-H. Lin, X. Zhuang, C. Goudeseune, S. King,
M. Hasegawa-Johnson, and T. S. Huang. Improving
faster-than-real-time human acoustic event detection
by saliency-maximized audio visualization. In Proc.
ICASSP, pages 1–4, 2012.

[15] S. Meignier and T. Merlin. LIUM SpkDiarization: an
open source toolkit for diarization. In Carnegie-Mellon
University Sphinx Workshop for Users and Developers
(CMU-SPUD), Mar. 2010.

[16] P. Mermelstein. Distance measures for speech
recognition: Psychological and instrumental. In C. H.
Chen, editor, Pattern Recognition and Artificial
Intelligence, pages 374–388. Academic Press, 1976.

[17] Microsoft Corp. Silverlight. www.silverlight.net, 2012.

[18] B. Reitinger, M. Hoefler, A. Lengauer, R. Tomasi,
M. Lamperter, and M. Gruber. Dragonfly: interactive
visualization of huge aerial image datasets. In Proc.
21st ISPRS Congress, volume 37, pages 491–494, 2008.

[19] R. N. Shepard. Circularity in judgements of relative
pitch. J. Acoust. Soc. Am., 36(12):2346–2353, 1964.

[20] L. Williams. Pyramidal parametrics. SIGGRAPH
Computer Graphics, 17(3):1–11, July 1983.

[21] R. Williams, L. Yan, X. Zhou, L. Lu, A. Centeno,
L. Kuan, M. Hawrylycz, and G. Rosen. Global
exploratory analysis of massive neuroimaging
collections using Microsoft Live Labs Pivot and
Silverlight. In Neuroinformatics: INCF Japan Node
Session Abstracts, 2010.

[22] C. Xu and S. A. Boppart. Comparative performance
analysis of time-frequency distributions for
spectroscopic optical coherence tomography. In
Biomedical Topical Meeting, page FH9. Optical
Society of America, 2004.

[23] S. Young, G. Evermann, T. Hain, D. Kershaw,
G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev,
and P. Woodland. The HTK Book. Cambridge
University Engineering Dept., Cambridge, UK, 2002.

[24] X. Zhuang, X. Zhou, M. A. Hasegawa-Johnson, and
T. S. Huang. Real-world acoustic event detection.
Pattern Recognition Letters, 31(2):1543–1551, Sept.
2010.

[25] X. Zhuang, X. Zhou, T. S. Huang, and
M. Hasegawa-Johnson. Feature analysis and selection
for acoustic event detection. In Proc. ICASSP, pages
17–20, 2008.

41

